Saturday 18 May 2013

Aeronautical Engineering


Aeronautical engineering:












The roots of aeronautical engineering can be traced to the early days of mechanical engineering, to inventors’ concepts, and to the initial studies of aerodynamics, a branch of theoretical physics. The earliest sketches of flight vehicles were drawn by Leonardo da Vinci, who suggested two ideas for sustentation. The first was an ornithopter, a flying machine using flapping wings to imitate the flight of birds. The second idea was an aerial screw, the predecessor of the helicopter. Manned flight was first achieved in 1783, in a hot-air balloon designed by the French brothers Joseph-Michel and Jacques-Étienne Montgolfier. Aerodynamics became a factor in balloon flight when a propulsion system was considered for forward movement. Benjamin Franklin was one of the first to propose such an idea, which led to the development of the dirigible. The power-driven balloon was invented by Henri Gifford, a Frenchman, in 1852. The invention of lighter-than-air vehicles occurred independently of the development of aircraft. The breakthrough in aircraft development came in 1799 when Sir George Cayley, an English baron, drew an airplane incorporating a fixed wing for lift, an empennage (consisting of horizontal and vertical tail surfaces for stability and control), and a separate propulsion system. Because engine development was virtually nonexistent, Cayley turned to gliders, building the first successful one in 1849. Gliding flights established a data base for aerodynamics and aircraft design. Otto Lilienthal, a German scientist, recorded more than 2,000 glides in a five-year period, beginning in 1891. Lilienthal’s work was followed by the American aeronaut Octave Chanute, a friend of the American brothers Orville and Wilbur Wright, the fathers of modern manned flight.

Following the first sustained flight of a heavier-than-air vehicle in 1903, the Wright brothers refined their design, eventually selling airplanes to the U.S. Army. The first major impetus to aircraft development occurred during World War I, when aircraft were designed and constructed for specific military missions, including fighter attack, bombing, and reconnaissance. The end of the war marked the decline of military high-technology aircraft and the rise of civil air transportation. Many advances in the civil sector were due to technologies gained in developing military and racing aircraft. A successful military design that found many civil applications was the U.S. Navy Curtiss NC-4 flying boat, powered by four 400-horsepower V-12 Liberty engines. It was the British, however, who paved the way in civil aviation in 1920 with a 12-passenger Handley-Page transport. Aviation boomed after Charles A. Lindbergh’s solo flight across the Atlantic Ocean in 1927. Advances in metallurgy led to improved strength-to-weight ratios and, coupled with a monocoque design, enabled aircraft to fly farther and faster. Hugo Junkers, a German, built the first all-metal monoplane in 1910, but the design was not accepted until 1933, when the Boeing 247-D entered service. The twin-engine design of the latter established the foundation of modern air transport.

The advent of the turbine-powered airplane dramatically changed the air transportation industry. Germany and Britain were concurrently developing the jet engine, but it was a German Heinkel He 178 that made the first jet flight on Aug. 27, 1939. Even though World War II accelerated the growth of the airplane, the jet aircraft was not introduced into service until 1944, when the British Gloster Meteor became operational, shortly followed by the German Me 262. The first practical American jet was the Lockheed F-80, which entered service in 1945.

PEOPLE
TOPICS
A.P.J. Abdul Kalam (president of India)
Alexander M. Lippisch (German-American aerodynamicist)
B.J. Habibie (president of Indonesia)
Ben R. Rich (American engineer)
Bruce McCandless (American naval aviator and astronaut)
Burt Rutan (American aircraft and spacecraft designer)
Charles Lanier Lawrance (American aeronautical engineer)
Charles Stark Draper (American engineer)
Daniel Saul Goldin (American engineer)
Eugen Sänger (Austrian engineer)
George Michael Low (Austrian-born American aerospace engineer)
Georgy Ivanov (Bulgarian cosmonaut)
Hermann Oberth (German scientist)
Hugo Eckener (German aeronautical engineer)
Igor Sikorsky (Russian-American engineer)
Jean-Felix Piccard (American chemical engineer)
Jerome C. Hunsaker (American aeronautical engineer)
Juan de la Cierva (Spanish engineer)
Kelly Johnson (American aeronautical engineer)
Konstantin Eduardovich Tsiolkovsky (Soviet scientist)
Lawrence Hargrave (British aeronautical engineer)
Marcel Dassault (French industrialist)
Max Faget (American engineer)
Michael Griffin (American aerospace engineer)
Octave Chanute (American engineer)
Otto Lilienthal (German aeronautical engineer)
Paul Cornu (French engineer)
Percy Sinclair Pilcher (British engineer)
Qian Xuesen (Chinese scientist)
Robert C. Seamans, Jr. (American aeronautical engineer)
Robert Hutchings Goddard (American scientist)
Samuel Kurtz Hoffman (American engineer)
Samuel Pierpont Langley (American engineer)
Sergey Pavlovich Korolyov (Soviet scientist)
Sergey Vladimirovich Ilyushin (Soviet aircraft designer)
Sir Barnes Wallis (British military engineer)
Theodore von Kármán (American engineer)
Valentin Petrovich Glushko (Soviet scientist)
Vladimir Nikolayevich Chelomey (Soviet scientist)
Walter Robert Dornberger (German engineer)
Wernher von Braun (German-born American engineer)
William Hayward Pickering (American engineer and physicist)
Willy Messerschmitt (German engineer)
Commercial aircraft after World War II continued to use the more economical propeller method of propulsion. The efficiency of the jet engine was increased, and in 1949 the British de Havilland Comet inaugurated commercial jet transport flight. The Comet, however, experienced structural failures that curtailed the service, and it was not until 1958 that the highly successful Boeing 707 jet transport began nonstop transatlantic flights. While civil aircraft designs utilize most new technological advancements, the transport and general aviation configurations have changed only slightly since 1960. Because of escalating fuel and hardware prices, the development of civil aircraft has been dominated by the need for economical operation.

Technological improvements in propulsion, materials, avionics, and stability and controls have enabled aircraft to grow in size, carrying more cargo faster and over longer distances. While aircraft are becoming safer and more efficient, they are also now very complex. Today’s commercial aircraft are among the most sophisticated engineering achievements of the day.

Smaller, more fuel-efficient airliners are being developed. The use of turbine engines in light general aviation and commuter aircraft is being explored, along with more efficient propulsion systems, such as the propfan concept. Using satellite communication signals, onboard microcomputers can provide more accurate vehicle navigation and collision-avoidance systems. Digital electronics coupled with servo mechanisms can increase efficiency by providing active stability augmentation of control systems. New composite materials providing greater weight reduction; inexpensive one-man, lightweight, noncertified aircraft, referred to as ultralights; and alternate fuels such as ethanol, methanol, synthetic fuel from shale deposits and coal, and liquid hydrogen are all being explored. Aircraft designed for vertical and short takeoff and landing, which can land on runways one-tenth the normal length, are being developed. Hybrid vehicles such as the Bell XV-15 tilt-rotor already combine the vertical and hover capabilities of the helicopter with the speed and efficiency of the airplane. Although environmental restrictions and high operating costs have limited the success of the supersonic civil transport, the appeal of reduced traveling time justifies the examination of a second generation of supersonic aircraft.

No comments:

Post a Comment